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Abstract. Thesuccess of simulated annealing depends strongly-upon the choice of asuitable 
annealing schedule. For a class of small sample systems the optimal annealing schedules 
are determined. They show distinct scaling~behaviour as a function of the number of 
Metropolis steps carried out at each temperature of the schedule. This behaviour can be 
traced back to the influence of dominating barriers during cooling. Knowing the optimal 
schedule for a few different total annealing steps allows to predict the optimal annealing 
schedule for intermediate times. 

1. Introduction 

Simulated annealing is a technique that has attracted significant attention due to its 
suitability for finding near-optimal solutions to complex optimization problems [l]. 
Complex optimization problems are characterized by an objective function with many 
local minima. For such problems, conventional methods like steepest descend [Z] fail 
and simulated annealing (and other techniques, for instance genetic algorithms [3-51) 
have shown significant improvements for a variety of problems such as the travelling 
salesman problem [6,7], graph partitioning [SI, or chip-design [l, 9-11]. Simulated 
annealing was conceived as an analogy to the annealing of a real physicil system: just 
as careful annealing of a real physical system should bring it into its equilibrium state 
with the ambient temperature T and thus with T towards zero to its groundstate(s), 
the proper simulation of this procedure for an optimization problem should result in 
finding its optimal solution. 

The implementation of a simulated annealing algorithm incurs costs, mainly in the 
form of computer time. So, from the very beginning, the aim has been to lower these 
costs by optimizing the simulated annealing procedure itself [lo, 12-14]. Attempts have 
been made to improve the performance of simulated annealing by changing the 
algorithm in such a way as to avoid rejection of new states [15], or by choosing special 
move classes [16]. There is no doubt, however, that the success of the simulated 
annealing procedure depends strongly upon the choice of a suitable annealing schedule. 
Thus optimization of this part of the method seems to be an obvious approach, the 
central question being as follows. How can the schedule of an optimalannealingprocedure 
be characterized? 

t Present address: Institut fir Geophysik und Meteorologie der Universitit zu Kiiln, Kerpenerstrasse 13, 
D-W-5000 K6ln 41, Federal Republic of Germany. 
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Naturally the optimal schedule will depend on a number of different parameters. 
In this paper we present our findings about the dependence on one of these parameters, 
namely the total available annealing time. For applications this is a rather crucial 
parameter as it translates directly into computer time needed. We find that the optimal 
schedules of the systems considered here have a distinct scaling behaviour. Knowing 
the optimal schedule for a few different annealing times this scaling behaviour can be 
used to predict the optimal schedule for all intermediate times. 

2. The optimal annealing schedule 

The problem of finding the optimal annealing schedule first requires the definition of 
a measure of ‘optimality’ 117,181. There are several possible criteria, for instance 
maximizing the probability of being in the ground state, minimizing the BSF (best-so-far) 
energy 1191 or minimizing the mean final energy. Here we use the mean final energy, 
which from the viewpoint of statistical mechanics is the most natural choice. 

Consider a system of m states with energies E = (El,. . . , E,,,). Usually simulated 
annealing is thought of as an algorithm creating a random path in the state space of 
the system. When discussing certain statistical properties of simulated annealing an 
approach along these lines requires very many simulation runs to obtain data with 
reasonable error margins. Instead we opted to use the appropriate theoretical descrip- 
tion in form of a time discrete Markov process (Markov chain). In this description 
the complete dynamical evolution of the probability p.(i) of being in state a after 
Metropolis step i can be given in an analytical form. It is described by the transition 
probability matrix G(x) which contains the Arrhenius factors through which the 
temperature T enters the dynamics. For brevity we introduce a new parameter x = e-”T 
which we will also refer to as ‘temperature’. To be precise we define an inEnite 
temperature transition matrix G ( l )  =E= (no=) between states a and p :  

if p $ N ( a )  

where N ( a )  is the set of neighbours of a. For the systems considered below it is given 
by the connectivity of nodes in figure 2 or figure 6. For finite temperatures the transition 
matrix G(x) is obtained from II by: 

IIDeexp(-AE/T) ifAE>O,or#p 
if AE S 0, a # p 

1-  C Gca i f a = p  
(2) G,,= I w e  

where P E  =E(p)-E(or). The transition matrix of the two level system considered 
below is slightly different (cf section 4). 

Let p(0) be the initial probability distribution over the state space. The probability 
distribution p ( i )  after Metropolis step i is calculated from the previous distribution 
p(i-1) byp(i)=G(x,)p(i-1). The mean energy after step i is given by Ep(i). The 
optimal annealing schedule with respect to minimizing the mean final energy in a finite 
number N of Metropolis steps is then calculated by 

min 13 = minIx,) ,_,...., . . , E G ( X ~ ) G ( ~ ~ - ~ )  . G(x&KxI)P(O). (3) 
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In the usual application of simulated annealing the temperature is kept fixed for 
a number of Metropolis steps before it is lowered again. Here we follow the same 
scheme. We calculate the optimal annealing schedule with respect to the above-defined 
optimization criterion f o r ~ N = j * v  Metropolis steps. This means in our case that we 
optimize j temperatue steps and that the system is allowed to spend Y Metropolis steps 
at each temperature x”=,, . . .~ before lowering the temperature again. And, knowing that 
this is certainly true of any optimal schedule [17], we always set the temperature of 
the final step equal to zero. Thus the final form of the optimization problem is 

min = min{,,n-,,..., EG(O)G”(x,)G”(x.-J. .  : G ’ ( x d G ” ( X d ~ ( 0 ) .  (4) 
This optimization problem is solved numerically by using a conjugated gradient 

approach based on an algorithm given in Numerical Recipes [ZO]. We would like to 
point out that we did not use simulated annealing to solve (4) although this could be 
done in principle. Instead we found fast convergence with the conjugate gradient 
algorithm using several different starting values. 

E is minimized by the technique of Polak and Ribiere (cf Numerical Recipes [20]). 
This algorithm requires the calculation of-partial derivatives of with respect to the 
variables x,,. Problems arose because ofthe constraints that had to be met (temperature 
x E CO, 11). The inequality constraints can be treated by performing the line minimization 
excIusively within a j-dimensional cube whose comers R, have the following 
coordinates: 

, 

R, = (x , ,  x,, . . . , xj) ,  s = 1,. . . ,2’ where x, = 0 , l  n = 1,. . . , j. (5) 

 the^ algorithm proceeds as follows. A starting point X = ( x , ,  &, . . . , xj)  in the 
j-dimensional space is selected. Then the value and the derivatives o f  the objective 
function are calculated from their analytical formulae. From there, one proceeds in a 
vector direction determined by the conjugate gradient method. Next, using the golden- 
section method, the function is minimized along the line beginning at point X and 
ending on the surface of the j-dimensional cube. The minimum along this line becomes 
the starting point for the next iteration. Convergence is achieved when lVEl2 is less 
than an input tolerance value. 

3. Description of systems 

We study the optimal annealing schedule for three different systems: two with a tree 
structure and then a two-level system. The use of tree structures is motivated by the 
following consideration. Generally speaking, optimization problems are characterized 
by having a complex state-space structure often due to various constraints which have 
to be met. These constraints introduce a large number of local minima, often on the 
order of e”, where N is the number of degrees of freedom. These minima are separated 
by barriers of different height and the necessity to overco’me those barriers to reach 
one local minimum from another constitutes the complexity of the problem. This 
essential state space structure is preserved under a lumping technique recently intro- 
duced by Hoffmann and Sibani [ Z l ]  which allows to reduce the enormous number of 
states. A new coarse-grained state space shaped like a ‘tree’ is generated from an energy 
landscape; see figure 1. The nodes of the tree consist of subsets of ‘microscopic’ states 
lumped together. Then for low temperatures and rough energy surface the original 
dynamics according to the METROPOLIS algorithm can be mapped approximately into 
a random walk on the tree structure. Essentially, the simulated annealing procedure 
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states states 

nodes is given, while the energy differences are 
assigned randomly. 

Feure 1. Tree construction from an energy Figure 2. System 1: the connectivity between the 
landscape. 

can be described as ‘hopping over barriers’, so the tree model can be taken to be a 
good approximation of the original state space. 

The first model, System 1, has a simple state space comprised of 15 states. The size 
of the model is a compromise between computational limits and the number of barriers 
desired. The states of the system are organized in a tree-like way. The move class, i.e. 
the sets of neighbours, of the system is determined by the bonds in figure 2. Here the 
energy values were chosen randomly. 

The second model, System 2, is designed as shown in figure 6. Again it is a system 
consisting of 15 states with the same move class as System 1. The main feature of this 
tree is that for each ‘parent’ node the ratio of the barrier heights viewed from the two 
‘daughter’ nodes is always two. This choice is motivated by expected self-similarities 
in certain optimization problems 1221. 

Finally we consider a system of two levels separated by a barrier. The system has 
activation energies D* and D as viewed from the ground state and the high state, 
respectively. This system is studied as it allows an analytical treatment which provides 
some insight into the behaviour of Systems 1 and 2. 

4. Results 

System 1 

Solving (4) yields optimal annealing schedules shown in figure 3. We optimize j = 30 
temperature steps and plot the temperature x versus the step number n while varying 
the number of equal-temperature steps Y between 50 and 600. Here and in all the 
following computations the initial probability distribution p ( 0 )  is taken to be uniform. 
Optimal annealing schedules are thus obtained for a total number N of Metropolis 
steps ranging between 1500 and 18 000. A decrease in both the starting temperature 
and the plateau of the annealing schedule is observed for an increasing number of 
equal-temperature steps v. 

The outstanding feature contained in the observed data is the scaling behaviour 
shown by the annealing schedules of System 1. This is demonstrated in figure 4. At 
step n = 15, for example, we take the temperature A=,, of each optimal schedule in 



Scaling behaviour of optimal simulated annealing schedules 3271 
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Figure 3. Optimal annealing schedules of System 1. Temperature x plotted versus 
temperature step n while varying Y between 50 and 600 
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Figure 4. Scaling behaviour of optimal annealing 
schedules (System 1) shown at step n=15. 

figure 3, plot them versus v-', and fit the data with a curve whose equation is given by 

x. = 0.v-b .  (6) 
with a.=1S=0.81041 and b,,ls=0.195 09. Such scaling behaviour is also clearly to be 
seen at each temperature step n = 3 , .  . . ,27. The data of the first two temperature steps 
and steps n = 28,29 cannot be fitted exactly, and for n = 30 a fit with (6) fails completely. 

In figure 5 the scaling coefficients a and b are plotted versus the temperature step 
n = 3,. . '. ,2?. One sees that coefficient a decreases with increasing temperature step 
number n while coefficient b remains approximately constant. The data of coefficient 
a are fitted well by 

Figure 5. Scaling coefficients a and 6 as a function 
of step number n 

a. = 1.3122n-0-'8007 (7) 
and for coefficient b a linear curve fit yields 

bn=0.18865t0.0003n 
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Having observed scaling behaviour in System 1 the question arises whether this 
behaviour can also be found in systems with a certain self-similarity. 

System 2 

The optimal annealing schedules of System 2 computed with (4) are shown in figure 
7. Again we optimize j = 30 temperature steps and plot temperature x versus step 
number n while varying the number of same-temperature steps Y between 80 and 300. 
Note that this time the optimal schedules consist of three different plateaux instead 
of a single one as in System 1. The first jump in temperature x takes place at step 
n =21 and the second jump at n 

Again we find significant scaling behaviour in System 2 and the coefficients a and 
b as a function of step number n are shown in figure 8. The evolution of coefficients 
a and b with increasing temperature step n, i.e. with time, reveals the following 

28. 

states 
Figure 6. System 2 the maiu feature of this system is that for each parent node the ratio 
of the barrier heights viewed from the two daughter nodes is always two. 

0 10 20 30 40 
n 

Figure 7. Optimal annealing schedules of System 2. Temperature x plotted versus tem- 
perature step n while viuying Y between 80 and 300. 
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Rgure 8. Scaling coeficient a and 6 as a function of step number a 

remarkable characteristics. Coefficient a decreases with increasing n, and at temperature 
step n = 21 coefficient a jumps to a significantly higher value before continuing its 
decrease. At step n = 28 the coefficient jumps a second time and then decreases faster 
than in the previous two instances. Coe5cient b behaves similarly: it remains approxi- 
mately constant up to step n = 20, then jumps to a higher value and remains constant 
until step n = 28 is reached, at which point the second jump to a even higher value 
takes place. 

Due to these characteristics, the data of coefficient b can be fitted linearly for each 
section of the graph. Note that the n-dependence for b is very weak. 

b,," =0.2063+0.004 13n n = 1 , .  . . ,20  (gal 

bz.n =0.4404+0.01047n ii = 2 1 , .  . . ,27 ( 9 6 )  

b3,n ~0.8591-0.013 21n n = 28,29,30. ( 9 c )  

Two-leuel system , 

Here we optimize only a single temperature step'and vary the number of equal- 
temperature steps Y between 1000 and 15 000. The results plotted in figure 9 are based 
on the following system parameters. The energy of the ground state and the high state 
are taken to be zero and one, respectively. Activation energies D* and D are equal 
to three and to two, respectively. In this case the optimal annealing schedule is only 
a function of v and is represented by a single value of femperature xi Again scaling 
behaviour is observed: 

x = 1 . 3 0 6 1 ~ - ~ . ~ ~ ' ~ ~ .  (10) 

The optimal annealing schedule of this system can also be determined analytically 
within certain approximations. Schedules with more than one temperature can be 
obtained iteratively from the following single temperature step optimization. The 
probability distribution p ( n )  after Y equal-temperature steps with temperature x, is 
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Twa-levdsyrtem ~MDI~L<UU 

-0.43793 
x=1.3061* v 
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0.0004 0.0008 0.0012 

V-' 
Pigwe 9. Optimal annealing schedules and scaling behaviour of the two level system (with 
n =j=1 and U =  1000, 2000, 5000, 10000, 12000, 15000) and corresponding analytical 
data predicted from (13). 

calculated from distribution p(n-1) at the previous temperature by p(n) = 
ii(xm)vp(n-l), with 

qx,)=('-X" D* x: ) 
x g  1-x: 

Let p 2 ( n )  be the probability of being in the high state. Going into the eigenbasis 
of &), it can be written as: 

pz (n)  = h"p2(n -l)+(l - A 2 )  x. (12) 
X" 3- 1 

with the second largest eigenvalue A(&) = 1 -xf-xf. Here D* and D represent the 
activation energy as viewed from the ground state and the activation energy as viewed 
from the high state, respectively. 

According to the optimization criterion (4) one is interested in finding the optiinal 
temperature x.( v) which minimizes E over the interval [0 ,1 ] .  Setting the ground-state 
energy of the two-level system to zero shows that minimizing l? is equivalent to 
minimizing p2(n) .  Differentiating (12) with respect to x. and setting it equal to zero 
results in the transcendental equation for the optimal x. 

(13) 
with z = n!,/'v, 6 = 1/D and assuming v being large enough. For an interval around 
solution zo= x ~ { ~ v o  of (13) one obtains the approximate solution: 

x n ( v ) =  v-'(zo+ln(v/vo)s)s. (14) 

By comparing the coefficients of (14) with those of (6) one obtains the scaling 

(15) 

p , ( n ) ~ v l / D z ( D - l ) / D -  -e  I 

coe5cient b: 
b = 6 = 1/D. 
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We calculate x ( v )  for various v with U, = 10 000 as a reference point, D = 2, and 
xa( vo) = 0.023 1456 (obtained numerically from (4)) and find very good agreement with 
(14) as can be seen in figure 9. 

Finally we calculate the optimal annealing schedule of a two state system ( j  = 30, 
v =.150) with a barrier height ratio D*/D = 7.28/5.28 (this is also the barrier height 
ratio between states 1 and 4 of System 1) and compare it with the optimal annealing 
schedule of System 1 (j = 30, v = 600) by taking into account a rescaling of ‘time’ v:  
while in System 1 four steps are necessary to overcome the barrier, only~one step is 
needed in the two-level system. Figure 10 shows clearly that the two schedules coincide 
well. 

0.5 I 

Figure 10. Comparison between the annealing schedule of System 1 ( j  = 30, Y = 600) and 
the annealing schedule of the two-level system ( j = 3 0 ,  Y =  150) whose barrier height ratio 
D*/D =7.28/$.28 corresponds to the one of the ’dominating’ barrier of System 1. 

5. cooclusious 

Our calculations show that the optimal annealing schedules follow a power law 
x( U) - v-* within a finite interval of v. We find for the two-level system with activation 
energy D that b = 1/D, with corrections due to logarithmic terms as indicated in (14). 
For larger D the corrections become smaller. 

A comparison between the optimal annealing schedule of System 1 and the one of 
a two-level system suggests that System 1 behaves like a simple two-level system. The 
fact that the scaling coefficient b = 0.188 of System 1 (see figure 5) is in very good 
agreement with b = 1/5.28 = 0.189, where D = 5.28 is the activation energy needed to 
get from state 1 into the ground state, supports this conclusion. Moreover it shows 
that the scaling behaviour is dominated by the largest barrier provided enough time 
v spent at each temperature step (from numerical experience 250 for the systems 
considered here). The number of equal-temperature steps v being large will ensure 
that all the fast eigenmodes will decay quickly except for the slowest eigenmode and 
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the stationary one. In this case optimizing the annealing schedule is equivalent to 
optimizing only the slowest eigenmode. 

This is further supported by the following intriguing feature of the optimal schedule. 
The temperature decreases approximately logarithmically with 

A 
In(v) + B In(n) - C' T, = 

Inserting (7) into (6) and comparing it with (16) gives 

A =  l l b  = D  B=0.18007/b=0.953 C =ln(1.3122)/b =ln(4.21). (17) 

Approximating B by 1 and C by ln(4) the optimal schedule behaves roughly as 

D 
Ln(nv/4), 

T,, = 

This dependence reminds very much of the well known schedule which guarantees 
that the global minimum is achieved with probability one [12]. However, such a 
dependence has also been found for the long-time dependence of the optimal schedule 
for a two-level system [18]. Again the 4 in the denominator corresponds to a rescaling 
of 'time' as in System 1 four steps are necessary to overcome the barrier between states 
1 and 4, while only one step is needed in the two-level system. Regarding the approxima- 
tions made note that the optimization considered in [18] allowed a continuous tem- 
perature change while here only a step functionis allowed. Nonetheless this observation 
provides additional evidence that at any time the optimal schedule calculated here is 
governed by one dominating bamer. 

The optimal schedules of System 2 consist of three different plateaux. The scaling 
coefficient b is a different constant for each plateau and each time corresponds to a 
different bamer to overcome. So, when most of the probability is shovelled over the 
currently dominating bamer the temperature drops to a new plateau since then the 
schedule is dominated by the next barrier. 

This picture is ,supported by a thorough eigenmode analysis. We determined all 
eigenvalues and eigenvectors for a large number of temperature values along the 
optimal schedule. For those temperature values we were thus able to write down an 
analytic solution of the dynamics. This enabled us to study the progress of the annealing 
in detail. For instance the first section of the schedule is dominated basically by.the 
transition from state 5 to the groundstate 1 over a bamer of height D = 4. The exponent 
b, = 0.2063 corresponds approximately to the expected value 1/ D = 0.25. 

As already pointed out the observed scaling behaviour x,(Y) = anv-bn is only valid 
within a finite interval of v. Knowing, however, a few optimal schedules within a 
limited Y interval the exponent b,, as well as the constant of proportionality can be 
obtained from a power law fit and thus the optimal schedule for all intermediate Y 
can be interpolated. 

Finally we would like to mention that in principle the n dependence of the constant 
of proportionality a. can also be obtained from (13) provided the dominating barrier 
is unchanged. 

Even though the systems studied here are quite small and thus too simple to 
encompass the complexity of large-scale simulated annealing problems, this work is 
a first step towards understanding the dependencies of optimal simulated annealing 
schedules. Further investigations of more complex systems and thus finding out more 
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about the characteristics relevant to the optimal schedule remains an important task 
of future research. 
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